Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications.

نویسندگان

  • Piyush Bajaj
  • Demir Akin
  • Amit Gupta
  • Debby Sherman
  • Bing Shi
  • Orlando Auciello
  • Rashid Bashir
چکیده

Surfaces of materials that promote cell adhesion, proliferation, and growth are critical for new generation of implantable biomedical devices. These films should be able to coat complex geometrical shapes very conformally, with smooth surfaces to produce hermetic bioinert protective coatings, or to provide surfaces for cell grafting through appropriate functionalization. Upon performing a survey of desirable properties such as chemical inertness, low friction coefficient, high wear resistance, and a high Young's modulus, diamond films emerge as very attractive candidates for coatings for biomedical devices. A promising novel material is ultrananocrystalline diamond (UNCD) in thin film form, since UNCD possesses the desirable properties of diamond and can be deposited as a very smooth, conformal coating using chemical vapor deposition. In this paper, we compared cell adhesion, proliferation, and growth on UNCD films, silicon, and platinum films substrates using different cell lines. Our results showed that UNCD films exhibited superior characteristics including cell number, total cell area, and cell spreading. The results could be attributed to the nanostructured nature or a combination of nanostructure/surface chemistry of UNCD, which provides a high surface energy, hence promoting adhesion between the receptors on the cell surface and the UNCD films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films

Nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) and multi-layer-graphene-like hybrid carbon films have been synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD) on oxidized silicon which is pre-seeded with diamond nanoparticles. MPECVD of N-UNCD on nanodiamond seeds produces a base layer, from which carbon structures nucleate and grow perpendicularly to form s...

متن کامل

Printable, Flexible, and Stretchable Forms of Ultrananocrystalline Diamond with Applications in Thermal Management

Thin-film diamond has many potential applications in electronics and optoelectronics, microelectromechanical systems (MEMS), wear-resistant coatings, thermal management, and other areas owing to its exceptional electronic, optical, mechanical, chemical/tribological, and thermal properties, respectively. However, challenges in the integration of thin-film diamond with other materials continue to...

متن کامل

Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin films

Most MEMS devices are currently based on silicon because of the available surface machining technology. However, Si has poor mechanical and tribological properties which makes it difficult to produce high performance Si based MEMS devices that could work reliably, particularly in harsh environments; diamond, as a superhard material with high mechanical strength, exceptional chemical inertness, ...

متن کامل

Investigations on diamond nanostructuring of different morphologies by the reactive-ion etching process and their potential applications.

We report the systematic studies on the fabrication of aligned, uniform, and highly dense diamond nanostructures from diamond films of various granular structures. Self-assembled Au nanodots are used as a mask in the self-biased reactive-ion etching (RIE) process, using an O2/CF4 process plasma. The morphology of diamond nanostructures is a close function of the initial phase composition of dia...

متن کامل

Linear stability of electron flow produced by field emission

Related Articles Gold ion implantation induced high conductivity and enhanced electron field emission properties in ultrananocrystalline diamond films Appl. Phys. Lett. 102, 061604 (2013) Direct observation of enhanced emission sites in nitrogen implanted hybrid structured ultrananocrystalline diamond films J. Appl. Phys. 113, 054311 (2013) Evaluation of field emission parameters in a copper na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical microdevices

دوره 9 6  شماره 

صفحات  -

تاریخ انتشار 2007